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Abstract— From a practical point of view it is very im-
portant to have an electronic circuit which is unconditional
stable, ie. it will not produce unwanted additional frequency
components by itself. This seems trivial but to predict
this unwanted behavior is not trivial at all. In microwave
history there is one well established method to determine
unconditional stability. This is based on the work of Stern
and others. In this memo, this will be proved to be incorrect
and as a consequence the reader is encouraged to look into
more fundamental methods in determining stability. The
underlying method to accomplish this is the principle of the
argument theorem of complex theory. Also Nyquist used this
same theorem in his stability analysis. The author hopes to
contribute to the awareness of the shortcoming of traditional
Stern based stability analysis via a counter example, without
providing a mathematical prove to show the actual flaw.

I. INTRODUCTION

It is common within the RF community to use stabil-
ity factors to determine the stability of a linear time-
invariant two-port, especially in the microwave field.
The most used equation, as function of the scattering
parameters, is

k =
1− |S11|2 − |S22|2 + |∆S|2

2 |S12S21| , (1)

where for unconditional stability the following must
apply:

k > 1 and |∆S| < 1, (2)

where ∆S = S11S22−S12S21. Often this type of stability
calculation is simply referred to as "k-factor". A disad-
vantage of this method is that it uses two conditions
and as a result, a more sophisticated stability factor has
been defined [1], where stability is ensured by a single
condition, or

µ =
1− |S11|2

|S22 −∆S S∗11|+ |S12 S21| > 1. (3)

In this memo, an example will be given where the
generally accepted method(s) will fail. A more detailed
discussion of this phenomena is given in [2], which upon
this memo is based. The most important cause of failure
is that analysis is done on a two-port which is a reduced

version from larger N-node networks. Unfortunately,
this condition is true in practise for most cases.

This memo is primarily intended to make designers
aware of the shortcomings of the well established meth-
ods for determining stability.

II. A SIMPLE RING OSCILLATOR AS EXAMPLE OF
FAILURE

Fig. 1 shows the schematic diagram of the ring oscil-
lator under test.

Fig. 1. Schematic diagram representation in SpectreRF.

Fig. 2 shows the Rollet stability factor k.

Fig. 2. Rollet stability factor, stable if k > 1.



For stability there is a second condition to be fulfilled.
The determinant of the scattering parameters should be
smaller than one. Fig. 3 shows this.
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Fig. 3. Determinant of the S-parameters, for stability this should be
less than 1.

Based on this, one must conclude that the two-port
under test is unconditional stable. To investigate the
stability with a given source and load impedance, the
stability factor of Stern can be used. Fig. 4 shows this
factor.
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Fig. 4. Stern stability factor, stability if larger than 0 dB.

It is clear that the ring oscillator should be stable.
Please note that for readability reasons a logarithmic y-
axis has been chosen. There is a tendency of the graph
around 1.3 GHz but this is no strong indication of
instability. Also the alternative stability factor shows an
unconditional stable circuit, see Fig. 5.

Finally, a third method is investigated to determine
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Fig. 5. Alternative stability factor, stable if µ > 1.

the stability. This is done via the eigenvalues of

S† · S, (4)

where S =
[

S11 S12

S21 S22

]
and where the dagger denotes

Hermitian conjugate or conjugate transpose. This third
method can be explained as follows [3]. If the amplitude
of the two ingoing signals is denoted by ~α = (α1, α2),
and the outgoing signals by ~β = (β1, β2), then

~β = S · ~α =
[

S11 S12

S21 S22

] [
α1

α2

]
. (5)

Energy conservation requires |~β| ≤ |~α|. Using the
singular value decomposition for the matrix S, we find:
(with U1 and U2 unitary matrices, and λ± positive real
numbers)

~β = S · ~α = U1 ·
[

λ+

λ−

]
· U2 · ~α. (6)

Energy conservation now comes down to
λ+, λ− ≤ 1. One can immediately see that the squares
of the singular values are the eigenvalues of the matrix
S†S, and for the latter we can find an expression based
on the characteristic polynomial:

λ2
± = e± =

Tr
(
S†S

)±
√

Tr (S†S)2 − 4 det (S†S)

2
(7)

Where Tr (.) denotes the trace or sum of the diagonal
elements of the matrix. To obtain a stability factor based
on the singular value decomposition, we should look at
the largest of the eigenvalues only. Since both of them
must be real (S†S is hermitic) we know the square root
in the previous expression is real, so taking the positive
sign will give the value of e+.

We can also write out the terms, by using



S†S =
[

S∗11 S∗21
S∗12 S∗22

]
·
[

S11 S12

S21 S22

]
=

[ |S11|2 + |S21|2 S∗11S12 + S∗21S22

S11S
∗
12 + S21S

∗
22 |S12|2 + |S22|2

] , (8)

which leads to
Tr

(
S†S

)
= |S11|2 + |S21|2 + |S12|2 + |S22|2

det
(
S†S

)
=

(
|S11|2 + |S21|2

)(
|S12|2 + |S22|2

)
−

|S∗11S12 + S∗21S22|2
(9)

and finally gives us:

e+ = |S11|2 + |S21|2 + |S12|2 + |S22|2 +√(
|S11|2 + |S21|2 − |S12|2 − |S22|2

)2

+ 4 |S∗11S12 + S∗21S22|2
(10)

with the stability criterion e+ ≤ 1. This outcome is
verified in Mathematica 5.0 and is as follows.

Eigenvalue1,2 = 1
2

(
|S11|2 + |S12|2 + |S21|2 + |S22|2

±
√(

|S11|2 + |S12|2 + |S21|2 + |S22|2
)2

− 4 |∆S|2
)

.

(11)
If at least one of the eigenvalues is larger than one, it
means that there is at least one real pole in the right half
plane. This clearly indicates instability. It also reveals the
shortcoming of this method since it concentrates on the
real axis only. Complex poles in the right half plane are
not discovered by this method. Fig. 6 shows the √e±.
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Fig. 6. √
e± of the S-parameters, for stability both should be less than

1.

So far, there is no indication that the two-port under
test is instable. Based on the analysis one must conclude
that the circuit is unconditionally stable. However, this
is not true and this will be demonstrated in the next
section.

III. PROPER DETERMINATION OF STABILITY

There are two rigorous methods known to the author
that can be used to determine a system’s stability. The
first is a straightforward one, ie. a transient analysis.
Here the assumption is made that the transient simulator
is capable enough to handle instable circuits. Sometimes
initial conditions are required to show instability effects
and in other cases a proper integration method should
be selected. The second method is to find poles in the
right hand plane. This is also the method used in [2]
which paper upon this memo is based. The underlaying
mathematical theorem is the same as used by Nyquist
[4] for his stability analysis. A full explanation on how to
determine the poles of an N -node circuit is far beyond
the scope of this memo. Please refer to [2] for a detailed

discussion on this topic. However, in the SpectreRF
simulator there is a possibility to display the poles of a
two-port under test. In this particular case this analysis
already shows clearly that there is indeed a stability
problem, since there are two complex conjugated poles
to be found in the right half plane. Fig. 7 shows the
location of the poles found by this simulator.

1.408 GHz

Fig. 7. The location of the poles found by SpectreRF.

This result resembles the outcome of the analysis
conducted in [2], where a frequency of oscillation of
1.4075 GHz was determined.

Fig. 8 shows the transient behavior if the circuit under
test has been excited with a very short voltage pulse
in series with one of the inductors. This is done to
initiate the instability since there is no (omnipresent)
noise available during a transient analysis.

As can be seen from the transient analysis picture,
the half period time is approximately 357.592 psec. This
corresponds to a natural frequency of 1.4 GHz. This is
pretty close to the value found in [2].

IV. CONCLUSION

It has been shown that the traditional method of deter-
mining stability based upon the foundations described
by Stern can fail for the case where the circuit under
test is a reduced version of a larger N -node network. It



Fig. 8. Transient analysis with two (crosshair) markers to determine
the natural frequency.

has also be shown that a proper analysis can be done
through a well established pole location analysis where
it is important for stability that there are no poles in
the right hand plane. The author hopes to contribute
to the awareness of the shortcoming of traditional Stern
based stability analysis via a counter example, without
providing a mathematical prove to show the actual flaw.
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