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With rapid advancement in data acquistion technology (i.e.
analog-to-digital and digital-to-analog converters) and the
explosive introduction of micro-computers, selected complex
linear and nonlinear functions currently implemented with
analog circuitry are being alternately implemented with
sample data systems.

Though more costly than their analog counterpart, these
sampled data systems feature programmability. Additionally,
many of the algorithms employed are a result of develop-
ments made in the area of signal processing and are in some
cases capable of functions unrealizable by current analog
techniques.

With increased usage a proportional demand has evolved to
understand the theoretical basis required in interfacing these
sampled data-systems to the analog world.

This article attempts to address the demand by presenting
the concepts of aliasing and the sampling theorem in a
manner, hopefully, easily understood by those making their
first attempt at signal processing. Additionally discussed are
some of the unobvious hardware effects that one might
encounter when applying the sampled theorem.

With this. . . let us begin.

An Intuitive Development
The sampling theorem by C.E. Shannon in 1949 places
restrictions on the frequency content of the time function
signal, f(t), and can be simply stated as follows:

In order to recover the signal function f(t) exactly, it is
necessary to sample f(t) at a rate greater than twice its
highest frequency component.

Practically speaking for example, to sample an analog signal
having a maximum frequency of 2Kc requires sampling at
greater than 4Kc to preserve and recover the waveform
exactly.

The consequences of sampling a signal at a rate below its
highest frequency component results in a phenomenon
known as aliasing. This concept results in a frequency mis-
takenly taking on the identity of an entirely different fre-
quency when recovered. In an attempt to clarify this, envi-
sion the ideal sampler of Figure 1(a), with a sample period of
T shown in Figure 1(b), sampling the waveform f(t) as pic-
tured in Figure 1(c). The sampled data points of f’(t) are
shown in Figure 1(d) and can be defined as the sample set
of the continuous function f(t). Note in Figure 1(e) that an-
other frequency component, a’(t), can be found that has the
same sample set of data points as f’(t) in Figure 1(d). Be-

cause of this it is difficult to determine which frequency a’(t),
is truly being observed. This effect is similar to that observed
in western movies when watching the spoked wheels of a
rapidly moving stagecoach rotate backwards at a slow rate.
The effect is a result of each individual frame of film resem-
bling a discrete strobed sampling operation flashing at a rate
slightly faster than that of the rotating wheel. Each observed
sample point or frame catches the spoked wheel slightly
displaced from its previous position giving the effective ap-
pearance of a wheel rotating backwards. Again, aliasing is
evidenced and in this example it becomes difficult to deter-
mine which is the true rotational frequency being observed.

00562001

FIGURE 1. When sampling, many signals may be
found to have the same set of data points. These are

called aliases of each other.
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An Intuitive Development (Continued)

On the surface it is easily said that anti-aliasing designs can
be achieved by sampling at a rate greater than twice the
maximum frequency found within the signal to be sampled.
In the real world, however, most signals contain the entire
spectrum of frequency components; from the desired to
those present in white noise. To recover such information
accurately the system would require an unrealizably high
sample rate.

This difficulty can be easily overcome by preconditioning the
input signal, the means of which would be a band-limiting or
frequency filtering function performed prior to the sample
data input. The prefilter, typically called anti-aliasing filter
guarantees, for example in the low pass filter case, that the
sampled data system receives analog signals having a spec-
tral content no greater than those frequencies allowed by the
filter. As illustrated in Figure 2, it thus becomes a simple
matter to sample at greater than twice the maximum fre-
quency content of a given signal.

A parallel analog of band-limiting can be made to the world of
perception when considering the spectrum of white light. It
can be realized that the study of violet light wavelengths
generated from a white light source would be vastly simpli-
fied if initial band-limiting were performed through the use of
a prism or white light filter.

The Sampling Theorem
To solidify some of the intuitive thoughts presented in the
previous section, the sampling theorem will be presented
applying the rigor of mathematics supported by an illustrative
proof. This should hopefully leave the reader with a comfort-
able understanding of the sampling theorem.

Theorem: If the Fourier transform F(ω) of a signal function
f(t) is zero for all frequencies above |ω| ≥ ωc, then
f(t) can be uniquely determined from its sampled
values

fn = f(nT) (1)

These values are a sequence of equidistant sample points
spaced apart. (f)t is thus given by

(2)

Proof: Using the inverse Fourier transform formula:

(3)

the band limited function, f(t), takes the form, Figure 3a,

(4)

(5)

See Figure 3c and Figure 3e.

Expressing F(ω) as a Fourier series in the interval −ωc ≤ ω ≤
ωc we have

(6)

00562002

FIGURE 2. Shown in the shaded area is an ideal, low pass, anti-aliasing filter response. Signals passed through the
filter are bandlimited to frequencies no greater than the cutoff frequency, fc. In accordance with the sampling
theorem, to recover the bandlimited signal exactly the sampling rate must be chosen to be greater than 2fc.
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The Sampling Theorem (Continued)

Where,

(7)

Further manipulating Equation (7)

(8)

Cn can be written as

(9)

Substituting Equation (9) into Equation (6) gives the periodic
Fourier Transform

(10)

of Figure 3f. Using Poisson’s sum formula (Note 1) F(ω) can
be stated more clearly as

(11)

Interestingly for the interval −ωc ≤ ω ≤ ωc the periodic func-
tion Fp(ω) and Figure 3f. equals F(ω) and Figure 3b. respec-
tively. Analogously if Fp(ω) were multiplied by a rectangular
pulse defined,

H(ω) = 1 −ωc ≤ ω ≤ ω (12)

and

H(ω) = 0 |ω| ≥ ωC (13)

then as pictured in Figure 4b, d, and f,

(14)

Solving for f(t) the inverse Fourier transform Equation (3) is
applied to Equation (14)

(15)

Note 1: Poisson’s sum formula

where and fs is the sampling frequency

giving

(16)

Equation (16) is equivalent to Equation (2) as is illustrated in
Figure 4e and Figure 3a respectively.

As observed in Figure 3 and Figure 4, each step of the
sampling theorem proof was also illustrated with its Fourier
transform pair. This was done to present alternate illustrative
proofs.

Recalling the convolution (Note 2) theorem, the convolution
of F(ω), Figure 3b, with a set of equidistant impulses, Figure
3d, yields the same periodic frequency function Fp(ω), Figure
3f, as did the Fourier transform of fn, Figure 3e, the product
of f(t), Figure 3a, and its equidistant sample impulses, Figure
3c.

In the same light the original time function f(t), Figure 4e,
could have been recovered from its sampled waveform by
convolving fn, Figure 4a, with h(t), Figure 4c, rather than
multiplying Fp(ω), Figure 4b, by the rectangular function
H(ω), Figure 4d, to get F(ω), Figure 4f, and finally inverse
transforming to achieve f(t), Figure 4e, as done in the math-
ematic proof.
Note 2: The convolution theorem allows one to mathematically convolve in
the time domain by simply multiplying in the frequency domain. That is, if f(t)
has the Fourier transform F(ω), and x(t) has the Fourier transform X(ω), then
the convolution f(t)*x(t) has the Fourier transform F(ω)•X(ω).

f(t) * x(t) ↔ F(ω) • X(ω)

f(t) • x(t) ↔ F(ω) * X(ω)
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The Sampling Theorem (Continued)

00562003

FIGURE 3. Fourier transform of a sampled signal.
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The Sampling Theorem (Continued)

Some Observations and Definitions
If Figure 3f or Figure 4b are re-examined it can be noted that
the original spectrum Fp(ω), |ω| ≤ ωc, and its images Fp(ω),
|ω| ≥ ωc, are non-overlapping. On the other hand Figure 5
illustrates spectral folding, overlapping or aliasing of the
spectrum images into the original signal spectrum. This
aliasing effect is, in fact, a result of undersampling and
further causes the information of the original signal to be
indistinguishable from its images (i.e. Figure 1e). From Fig-
ure 6 one can readily see that the signal is thus considered
non-recoverable.

The frequency |fc| of Figure 3f and Figure 4b is exactly one
half the sampling frequency, fc=fs/2, and is defined as the
Nyquist frequency (after Harry Nyquist of Bell Laboratories).
It is also often called the aliasing frequency or folding fre-
quency for the reasons discussed above. From this we can

say that in order to prevent aliasing in a sampled-data sys-
tem the sampling frequency should be chosen to be greater
than twice the highest frequency component fc of the signal
being sampled.

By definition

fs ≥ 2fc (17)

Note, however, that no mention has been made to sample at
precisely the Nyquist rate since in actual practice it is impos-
sible to sample at fs = 2fc unless one can guarantee there
are absolutely no signal components above fc. This can only
be achieved by filtering the signal prior to sampling with a
filter having infinite rolloff. . . a physical impossibility, see
Figure 2.

00562004

FIGURE 4. Recovery of a signal f(t) from sampled data information.
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Some Observations and Definitions (Continued)

00562005

FIGURE 5. Spectral folding or aliasing caused by:
(a) under sampling

(b) exaggerated under sampling.

00562006

FIGURE 6. Aliased spectral envelope (a) and (b) of
Figure 5a and Figure 5b respectively.
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Some Observations and Definitions (Continued)

The Sampling Theorem and Its
Hardware

IMPLICATIONS

Though there are numerous sophisticated techniques of
implementation, it is appropriate to re-emphasize that the
intent of this article is to give the first time user a basic and
fundamental approach toward the design of a sampled-data
system. The method with which to achieve this goal will be to
introduce a few of the common perils encountered when
implementing such a system. We begin by considering the
generalized block diagram of Figure 7.

As shown in Figure 7, prior to any signal processing manipu-
lation the analog input signal must be preconditioned to
prevent aliasing and thereafter digitized to logic signals us-
able by the logic function block. The antialiasing and digitiz-
ing functions are performed by an input filter and
analog-to-digital converter respectively. Once digitized the
signal can then be altered or processed and upon comple-
tion, reconstructed back to a continuous analog signal via a
digital-to-analog converter followed by a smoothing filter.

To this point no mention has been made concerning the
sample and hold circuit block depicted in Figure 7. In general
the analog-to-digital converter can operate as a stand alone
unit. In many high speed operations however, the converter
speed is insufficient and thus requires the assistance of a
sample and hold circuit. This will be discussed in detail
further in the article.

The Antialiasing Input Filter

As indicated earlier in the text, the antialiasing filter should
band-limit the input signal’s spectrum to frequencies no
greater than the Nyquist frequency. In the real world how-
ever, filters are non-ideal and have typical attenuation or
band-limiting and phase characteristics as shown in Figure 8
(Note 3). It must also be realized that true band-limiting of a
specific frequency spectrum is not possible. In the sample
data system band-limiting is achieved by attenuating those
frequencies greater than the Nyquist frequency to a level
undetectable or invisible to the system analog-to-digital
(A/D) converter. This level would typically be less than the
rms quantization (Note 4) noise level defined by the specific
converter being used.
Note 3: In order not to disrupt the flow of the discussion a list of filter terms
has been presented in Appendix A.

Note 4: For an explanation of quantization refer to section IV. B. of this
article.

As an example of how an antialiasing filter would be applied,
assume a sample data system having within it an 8-bit A/D
converter. Eight bits translates to 2n=28=256 levels of reso-
lution. If a 2.56 volt reference were used each quantization
level, q, would represent the equivalent of 2.56 volts/256=10
millivolts. Realizing this the antialiasing filter would be de-

signed such that frequencies in the stopband were attenu-
ated to less than the rms quantization noise level of
and thus appearing invisible to the system. More specifically

It can be seen, for example in the Butterworth filter case
(characterized as having a maximally flat pass-band) of Fig-
ure 9a that any order of filter may be used to achieve the
−59 dB attenuation level, however, the higher the order, the
faster the roll off rate and the closer the filter magnitude
response will approach the ideal.

Referring back to Figure 8 it is observed that those frequen-
cies greater than ωa are not recognized by the A/D converter
and thus the sampling frequency of the sample data system
would be defined as ωs ≥ 2ωa. Additionally, the frequencies
present within the filtered input signal would be those less
than ωa. Note however, that the portion of the signal frequen-
cies least distorted are those between ω=O and ωp and
those within the transition band are distorted to a substantial
degree, though it was originally desired to limit the signal to
frequencies less than the cutoff ωp, because of the non-ideal
frequency response the true Nyquist frequency occurred at
ωa. We see then that the sampled-data system could at most
be accurate for those frequencies within the antialiasing filter
passband.

From the above example, the design of an antialiasing filter
appears to be quite straight forward. Recall however, that all
waveforms are composed of the sums and differences of
various frequency components and as a result, if the re-
sponse of the filter passband were not flat for the desired
signal frequency spectrum, the recovered signal would be an
inaccurate summation of all frequency components altered
by their relative attenuations in the pass-band.

Additionally the antialiasing filter design should not neglect
the effects of delay. As illustrated in Figure 8 and Figure 9b,
delay time corresponds to a specific phase shift at a particu-
lar frequency. Similar to the flat pass-band consideration, if
the phase shift of the filter is not exactly proportional to the
frequency, the output of the filter will be a waveform in which
the summation of all frequency components has been al-
tered by shifts in their relative phase. Figure 9b further
indicates that contrary to the roll off rate, the higher the filter
order the more non-ideal the delay becomes (increased
delay) and the result is a distorted output signal.

A final and complex consideration to understand is the ef-
fects of sampling. When a signal is sampled the end effect is
the multiplication of the signal by a unit sampling pulse train
as recalled from Figure 3a, c and e. The resultant waveform
has a spectrum that is the convolution of the signal spectrum
and the spectrum of the unit sample pulse train, i.e. Figure
3b, d, and f. If the unit sample pulse has the classical sin X/X

00562007

FIGURE 7. Generalized single channel sample data system.
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The Sampling Theorem and Its
Hardware (Continued)

spectrum (Note 5) of a rectangular pulse, see Figure 13,
then the convolution of the pulse spectrum with the signal
spectrum would produce the non-ideal sampled signal spec-
trum shown in Figure 10a, b, and c.

It should be realized that because of the band-limiting or
filtering and delay response of the Sin X/X function com-
bined with the effects of the non-ideal antialiasing filter (i.e.
non-flat pass-band and phase shift) certain of the sum and

difference frequency components may fall within the desired
signal spectrum thereby creating aliasing errors, Figure 10c.

When designing antialiasing filters it will be found that the
closer the filter response approaches the ideal the more
complex the filter becomes. Along with this an increase in
delay and pass-band ripple combine to distort and alias the
input signal. In the final analysis the design will involve trade
offs made between filter complexity, sampling speed and
thus system bandwidth.
Note 5: This will be explained more clearly in Section IV. of this article.

00562008

FIGURE 8. Typical filter magnitude and phase versus frequency response.
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The Sampling Theorem and Its Hardware (Continued)

00562009

a) Attenuation characteristics of a normalized Butterworth filter as a function of degree n.

00562010

b) Group delay performances of normalized Butterworth lowpass filters as a function of degree n.

FIGURE 9.
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The Sampling Theorem and Its Hardware (Continued)

The Analog-to-Digital Converter

Following the antialiasing filter is the A/D converter which
performs the operations of quantizing and coding the input
signal in some finite amount of time. Figure 11 shows the
quantization process of converting a continuous analog input
signal into a set of discrete output levels. A quantization, q, is
thus defined as the smallest step used in the digital

representation of fq(n) where f(n) is the sample set of an
input signal f(t) and is expressed by a finite number of bits
giving the sequence fq(n). Digitally speaking q is the value of
the least significant code bit. The difference signal e(n)
shown in Figure 11 is called quantization noise or error and
can be defined as e(n) = f(n) − fq(n). This error is an irreduc-
ible one and is a function of the quantizing process. Its error
amplitude is dependent on the number of quantization levels
or quantizer resolution and as shown, the maximum quanti-
zation error is |q/2|.

Generally e(n) is treated as a random error when described
in terms of its probability density function, that is, all values of
e(n) between q/2 and −q/2 are equally probable, then for the
average value e(n)avg=0 and for the rms value

As a side note it is appropriate at this point to emphasize that
all analog signals have some form of noise corruption. If for
example an input signal has a finite signal-to-noise ratio of
40dB it would be superfluous to select an A/D converter with

a high number of bits. It may be realized that the use of a
large number of bits does not give the digitized signal a
higher signal-to-noise ratio than that of the original analog
input signal. As a supportive argument one may say that
though the quantization steps q are very small with respect
to the peak input signal the lower order bits of the A/D
converter merely provide a more accurate representation of
the noise inherent in the analog input signal.

Returning to our discussion, we define the conversion time
as the time taken by the A/D converter to convert the analog
input signal to its equivalent quantization or digital code. The
conversion speed required in any particular application de-
pends upon the time variation of the signal to be converted
and the amount of resolution or bits, n, required. Though the
antialiasing filter helps to control the input signal time rate of
change by band-limiting its frequency spectrum, a finite
amount of time is still required to make a measurement or
conversion. This time is generally called the aperture time
and as illustrated in Figure 12 produces amplitude measure-
ment uncertainty errors. The maximum rate of change de-
tectable by an A/D converter can simply be stated as

(18)

00562011

FIGURE 10. (c) equals the convolution of (a) with (b).
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The Sampling Theorem and Its
Hardware (Continued)

If for example V full scale = 10.24 volts, T conversion time =
10 ms, and n = 10 or 1024 bits of resolution then the
maximum rate of change resolvable by the A/D converter
would be 1 volt/sec. If the input signal has a faster rate of
change than 1 volt/sec, 1 LSB changes cannot be resolved
within the sampling period.

In many instances a sample-and-hold circuit may be used to
reduce the amplitude uncertainty error by measuring the
input signal with a smaller aperture time than the conversion
time aperture of the A/D converter. In this case the maximum
rate of change resolvable by the sample-and-hold would be

(19)

Note also that the actual calculated rate of change may be
limited by the slew rate specification fo the sample-and-hold
in the track mode. Additionally it is very important to clarify
that this does not imply violating the sampling theorem in lieu
of the increased ability to more accurately sample signals
having a fast time rate of change.

00562012

FIGURE 11. Quantization error.

00562013

∆V: AMPLITUDE UNCERTAINTY ERROR

ta: APERTURE TIME

∆ta: APERTURE TIME UNCERTAINTY

FIGURE 12. Amplitude uncertainty as a function of (a) a nonvarying aperture and(b) aperture time uncertainty.
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The Sampling Theorem and Its
Hardware (Continued)

An ideal sample-and-hold effectively takes a sample in zero
time and with perfect accuracy holds the value of the sample
indefinitely. This type of sampler is also known as a zero
order hold circuit and its effect on a sample data system
warrants some discussion.

It is appropriate to recall the earlier discussion that the
spectrum of a sampled signal is one in which the resultant
spectrum is the product obtain by convolving the input signal
spectrum with the sin X/X spectrum of the sampling wave-
form. Figure 13 illustrates the frequency spectrum plotted
from the Fourier transform

(20)

of a rectangular pulse. The sin X/X form occurs frequently in
modern communication theory and is commonly called the
sampling function.

The magnitude and phase of a typical zero order hold sam-
pler spectrum

(21)

is shown in Figure 14 and Figure 15 illustrates the spectra of
various sampler pulse-widths. The purpose of presenting
this illustrative information is to give insight at to what effects
cause the aliasing described in Figure 10. From Figure 15 it
is realized that the main lobe of the sin X/X function varies
inversely proportional with the sampler pulse-width. In other
words a wide pulse-width, or in this case the aperture win-
dow, acts as a low pass filtering function and limits the
amount of information resolvable by the sample data sys-
tem. On the other hand a narrow sampler pulse-width or
aperture window has a broader main lobe or band-width and
thus when convolved with the analog input signal produces
the least amount of distortion. Understandably then the ef-
fect of the sampler’s spectral phase and main lobe width
must be considered when developing a sampling system so
that no unexpected aliasing occurs from its convolution with
the input signal spectrum.

00562014

FIGURE 13. The Fourier transform of the rectangular
pulse (a) is shown in (b).
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The Sampling Theorem and Its
Hardware (Continued)

00562015

FIGURE 14. Sampling Pulse (a), its Magnitude (b) and
Phase Response (c).

00562016

FIGURE 15. Pulse width and how it effects the sin X/X
envelop spectrum (normalized amplitudes).
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The Sampling Theorem and Its
Hardware (Continued)

The Digital-to-Analog Converter and Smoothing Filter

After a signal has been digitally conditioned by the signal
processing unit of Figure 7, a D/A converter is used to
convert the sampled binary information back in to an analog
signal. The conversion is called a zero order hold type where
each output sample level is a function of its binary weight
value and is held until the next sample arrives, see Figure
16. As a result of the D/A converter step function response it
is apparent that a large amount of undesirable high fre-
quency energy is present. To eliminate this the D/A converter
is usually followed by a smoothing filter, having a cutoff
frequency no greater than half the sampling frequency. As its
name suggests the filter output produces a smoothed ver-
sion of the D/A converter output which in fact is a convolved
function. More simply said, the spectrum of the resulting
signal is the product of a step function sin X/X spectrum and
the band-limited analog filter spectrum. Analogous to the
input sampling problem, the smoothed output may have
aliasing effects resulting from the phase and attenuation
relations of the signal recovery system (defined as the D/A
converter and smoothing filter combination).

As a final note, the attenuation due to the D/A converter sin
X/X spectrum shape may in some cases be compensated for
in the signal processing unit by pre-processing using a digital
filter with an inverse response X/sin X prior to D/A conver-
sion. This allows an overall flat magnitude signal response to
be smoothed by the final filter.

A Final Note
This article began by presenting an intuitive development of
the sampling theorem supported by a mathematical and
illustrative proof. Following the theoretical development were
a few of the unobvious and troublesome results that develop
when trying to put the sampling theorem into practice. The
purpose of presenting these thought provoking perils was to
perhaps give the beginning designer some insight or guide-
lines for consideration when developing a sample data sys-
tem’s interface.
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Appendix A

BASIC FILTER CONCEPTS

A filter is a network used for separating signal waves on the
basis of their frequency and is usually composed of passive,
reactive and active elements such as resistors, capacitors,
inductors, and amplifiers, or combinations thereof.

There are basically five types of filters used to pass or reject
such signals and they are defined as follows:

1. A low-pass filter passes a band of frequencies called the
passband, ranging from zero frequency or DC to a cer-
tain cutoff frequency, ωc (Note 6), and in addition has a
maximum attenuation or ripple level of AMAX within the
passband. See Figure 17.

Frequencies beyond the ωc may have an attenuation
greater than AMAX but beyond a specific frequency ωs

defined as the stopband frequency, a minimum attenu-
ation of AMIN must prevail. The band of frequencies
higher than ωs and maintaining attenuation greater than
or equal to AMIN is called the stopband. The transition
region or transition band is that band of frequencies
between ωc and ωs.

Note 6: Recall that the radian frequency ω=2πf.

00562017

FIGURE 16. (a) Processed signal data points (b) output
of D/A converter (c) output of smoothing filter.
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Appendix A (Continued)

A high-pass filter allows frequencies above the passband
frequency, ωc, to pass and rejects frequencies below this
point. AMAX must be maintained in the passband and fre-
quencies equal to and below the stopband frequency, ωs,
must have a minimum attenuation of AMIN. See Figure 18.

A bandpass filter performs the function of passing a specific
band of frequencies while rejecting those frequencies above
and below ωc2 and lower, ωc1 cutoff frequency limits. See
Figure 19.

As in the previous two cases the passband is required to
sustain an attenuation of AMAX, and the stopband of frequen-

cies above and below ωs2 and ωs2 respectively, must have a
minimum attenuation of AMIN.

A band-reject filter or notch filter allows all but a specific band
of frequencies to pass. As shown in Figure 4, those frequen-
cies between ωs1 and ωs2 are filtered out and those frequen-
cies above and below ωc2 and ωc1 respectively are passed.
The attenuation requirements of the stopband AMIN and
passband AMAX must still hold.

An all-pass or phase shift filter allows all frequencies to pass
without any appreciable attenuation. It further introduces a
predictable phase shift to all frequencies passed, though not

00562018

FIGURE 17. Common Low Pass Filter Response

00562019

FIGURE 18. Common High Pass Filter Response

00562020

FIGURE 19. Common Band-pass Filter Response

00562021

FIGURE 20. Common Band-Reject Filter Response
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Appendix A (Continued)

restricting the entire range of frequencies to a specific phase
shift (i.e., a phase shift may be imposed upon a selected
band of frequencies and appear invisible to all others).
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