
Appendix A

Probability Distributions

Name Probability Mean Variance Relationships
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Table A.1: Discrete probability distributions.
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Name Density Mean Variance Relationships
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Table A.2: Distributions related to the Gaussian.
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Name Density Mean Variance Relationships

Uniform �
��� , � � 
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Table A.3: Non-Gaussian distributions.
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Appendix B

Matrix Theory

B.1 Basic Definitions
An � � � matrix � is a rectangular (square if � � �) arrangement of scalar elements ��	 (!�� row, ���

column).

� �

$%%%&
��� ��� 
 
 
 ���
��� ��� ���
...

. . .
...

��� ��� 
 
 
 ���

'((()
When thematrix is square, themain diagonal extends from the upper left corner to the lower right and consists
of the elements ���. The cross diagonal is the opposite diagonal and consists of the elements ������
�.
A vector is common terminology for a column (� � 	) matrix. The dimension of the vector equals �.
Rectangular matrices are (usually) denoted by boldface uppercase letters (��&� � � �) and vectors by boldface
lowercase letters (���� � � �). The dimension of a vector is expressed as ������.

To add matrices, the number of rows in each matrix as well as the number of columns must agree. The
sum of�� � matrices � and & is defined to be an � � � matrix � whose elements are

@�	 � ��	 
��	 �

Matrix addition is commutative (�
& � &
�). The product�& of two matrices� and& is only defined
if the number of rows of� equals the number of columns of&. Thus, if� represents an .�� matrix and&
an �� � matrix, the result is an . � � matrix �, each term of which is defined to be

@�	 �
�

���

�����	 � ! � 	� � � � � .� � � 	� � � � � ��

Clearly, the matrix product is not necessarily commutative (�& �� &�), but is distributive [��& 
 �� �
�& 
��] and associative [��&�� � ��&��].

Several methods of rearranging the elements of a matrix are frequently used. The complex conjugate of
the matrix� is denoted by�� and consists of the complex conjugates of the elements of�.

�����	 � ���	

The transpose of an � � � matrix� is an ��� matrix�� whose rows are the columns of�.�
��

�
�	

� �	�

The transpose of a product of two matrices equals the product of their transposes, but in reversed order.

��&�
�

� &���

This property applies whether the matrices are square or not. The conjugate transpose (sometimes known as
the Hermitian transpose) of� is denoted by�� and equals �����.

�����	 � ��	�
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B.2 Basic Matrix Forms
The relations between the values of the elements of a matrix define special matrix cases. Matrices having
special internal structure are important to recognize in manipulating matrix expressions.

� A diagonal matrix, denoted by ���-����� ���� � � � � ����, has non-zero entries only along the main
diagonal (! � �) of the matrix. $%%%%&

��� � 
 
 
 �

� ��� �
...

...
. . . �

� 
 
 
 � ���

'(((()
� a block diagonal matrix has square matrices ��� � � � ��� on the diagonal, with zero-valued entries
elsewhere. Note that these matrices do not necessary share a common size.$%%%&

�� 
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 ��

'((()
� The identitymatrix, denoted by �, is a special diagonal matrix having unity on the main diagonal.

� �

$%%%%&
	 � 
 
 
 �

� 	 �
...

...
. . .

� 
 
 
 � 	

'(((()
The identity matrix is so-named because it is the multiplicative identity for square matrices (�� �
�� � �).

� The ordering of the rows or columns of a square matrix can be reversed by pre- or post-multiplication
by the exchange matrix '.

' �

$%%%%&
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 � 	
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� . .
.
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 �

'(((()
� A lower triangularmatrix � has non-zero values on and “below” its main diagonal.
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$%%%%&
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 �

��� ��� �
...
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 ���

'(((()
An upper triangular matrix can be similarly defined.

� A Vandermonde matrix consists of columns containing geometric sequences.

� �

$%%%%%&
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 �������
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One special case of a square Vandermonde matrix is the DFT matrix� in which the elements are
�� � ��������/���. The discrete Fourier transform of a vector � can be expressed as

DFT��� ����

� A symmetric matrix equals its transpose (�� � �). A conjugate symmetric (Hermitian) matrix equals
its own conjugate transpose (�� � �). Correlation matrices, which have the form � � ������, are
Hermitian.

� A Toeplitz matrix has constant values along each of its diagonals (��	 � ���	).$%%%%%&
�� �� 
 
 
 ����
��� �� ��

...
. . .

. . .

��
���� ��
���� 
 
 
 ��

'((((()
In time series, correlation matrices are not only Hermitian, they are also Toeplitz. Hermitian Toeplitz
matrices have no more than � unique elements in the matrix. Because of this extensive redundancy of
values, many efficient techniques for computing expressions involving them have been developed.

� Constant values along the cross-diagonals of a square matrix define a Hankelmatrix.

��	 � ���	�� � �

$%%%%%%&
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�� �� 
 
 
 . .

.
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 ����� �����

'(((((()
All Hankel matrices are symmetric. If � is a Hankel matrix, then both '� and �' are Toeplitz
matrices. Hankel matrices are frequently used to express in matrix form the convolution of a sequence
with a finite-duration unit sample response. For example, if ���� �

	�
����
%��� =�����
��� for

� � > � 	� � � � � � � 	, the matrix form would be$%%%&
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��>�	�
��> �
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'((() �
� A square matrix is said to be circulant if each row is a circular rotation of the previous one.$%%%%%&

�� �� 
 
 
 ����
���� �� �� 
 
 

���� ���� �� 
 
 

...
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�� �� 
 
 
 ��

'((((()
All circulant matrices are Toeplitz; circulant matrices are symmetric only when the sequence ��� ��� � � �
is even: �� � ����� ! � 	� � � � � ��� (�� is arbitrary).

� The square matrix � is said to be orthogonal if it satisfies ��� � �. � is unitary if it satisfies
��� � �.

� The square matrix� is said to be a projection matrix if�� � �. Because of this property,�� � ��

for all choices of positive integers ���. The reason for this name will be given once eigenvalues are
defined (�B.6 �188�).
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� A matrix is said to have a null space if a set of non-zero vectors � exist that satisfy �� � 
. These
vectors would thereby be orthogonal to the rows of �. The matrix could be square or, more interest-
ingly, it could be rectangular, having more columns than rows. The rows would then define a collection
of vectors that represent all vectors for which�� �� �.

� The vector � is said to be in the range of the matrix� if it can be expressed as�� � � for some �.

B.3 Operations on Matrices
Several operations onmatrices and between them are so commonly used that specific terminology has evolved.

� The inner product ��� between two vectors � and � is defined to be the scalar expressed by�

��� �
�

���


�����

Since an inner product is a scalar, expressions involving inner products are frequently rearranged by
noting that the transpose of a scalar is the same scalar. Therefore, �����

�
� ���� � ���. Two vectors

are said to be orthogonal if their inner product is zero.

� The outer product ��� between two vectors 
 (dimension�) and � (dimension �) is an � � � matrix
whose elements are

������	 � 
��
�
	 �

� The Kronecker product�.& between two matrices� (�����) and& (�����) is the�����
���� matrix given by

�.& �

$%%%&
���& ���& 
 
 
 ����&
���& ���& ����&
...

. . .
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����& ����& 
 
 
 �����&

'((() �
The matrix & multiplied by the scalars ��	 is thus repeated throughout the matrix. The Kronecker
product of two positive-definite matrices is also positive definite.

� The inverse of a matrix � is denoted by ��� which satisfies ���� � ���� � �. The inverse of
a matrix is not guaranteed to exist. Numerous conditions on the inverse’s existence are detailed in the
following. When it does exist, the following properties hold.

1. If�, & are invertible matrices, ��&��� � &�����.

2. If�, & are invertible matrices, ��.&��� � ��� .&��
3. Assuming that all inverses exist where used, the inverse of a sum of matrices can be written several
useful ways.

��
&�%�
��

� ��� ����& �
%���&
���

���
%���

� ��� ����&� �
� 
%���&�

���
%���

� ��� ����& �
�
�%���&

���
�%���

Note that the matrices & and % need not be invertible for these relationships to be valid. In the
latter two, the matrix� need not be invertible. Notable special cases of this result are

�� 
 "������ � ���
!
� � ���

�
?


 ������
���

"
��
&��� � ��� ���� ���� 
&��

���
���

� In more abstract settings, the inner product between two vectors 
 and  is denoted by 

�  �. There, the inner product becomes
any mapping of two vectors to a scalar that satisfies three properties.

(i) 
 � 
� � 

�  ��
(ii) 
�
� � � !� � ��

� !� � ��
 � !� � �� � scalars
(iii) 

�
� " 
 � 
 �� 
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4. If the matrix � is either symmetric, Hermitian, circulant, or triangular, its inverse has the same
structure. The inverse of a Toeplitz matrix is not necessarily Toeplitz. The inverse of a Hankel
matrix is symmetric.

5. The inverse of a block diagonal matrix equals the matrix consisting of the inverses of the blocks
(if all of these individual inverses exist).$%%%&

�� 
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. . .
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 ��

'((()
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 ����

'((()
� A Givens rotation is the multiplication of a matrix � by a unitary matrix 
 that zeroes a specific
element of � [29: pp. 43–7]. This simple operation lies at the core of many numerical algorithms for
computing matrix inverses and eigensystems. The rotation matrix has the form of an identity matrix
augmented by a square submatrix of sine and cosine rotation values. For example, the matrix that zeroes
the second element of the fourth column of a % � % matrix has the form


 �

$%%%%&
	 � � � �
� � � ; �
� � 	 � �
� �; � � �
� � � � 	

'(((() �

where � � ����
�
���� 
 ����

����
and ; � ����

�
���� 
����

����
. The product 
� performs the

rotation by modifying only the second and fourth rows of �. Column modification is possible by
post-multiplying by the rotation matrix and suitably defining the rotation.

� The determinant of a square matrix� is denoted by ������ and is given by

������ � ��� ���� 
��� ���� 
 
 
 

 ��� �����
where ���	, the cofactor of �, equals ��	�	�� times the determinant of the �� � 	� � �� � 	� matrix
formed by deleting the !�� row and ��� column of �. A non-zero determinant is a necessary and
sufficient condition for the existence of the inverse of a matrix. The determinant of �� equals the
conjugate of the determinant of �: ������� � �������. The determinant of a unitary matrix has unity
magnitude. The determinant of the product of two square matrices is the product of their determinants.

�����&� � ������ ����&�

The determinant of a sum of matrices is not equal to the sum of their determinants. The determinant of
a Kronecker product of square matrices equals ����� .&� � ������� ����&��, where ������ � �
and ����&� � �.

� The trace ����� of the square matrix� equals the sum of its elements along the main diagonal.

����� �
�

���

���

The trace of a sum of matrices equals the sum of their traces.

����
&� � ����� 
 ���&�

The trace of a product of two square matrices does not necessarily equal the product of the traces of the
individual matrices; the product of two matrix’s traces does equal the trace of their Kronecker product:
����.&� � ����� ���&�. However, one of the more interesting properties of the trace is

����&� � ���&���
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Proving this property is straightforward. Using the full expression for the product of two matrices
given above, ����&� �

	
�

	
�������. Writing a similar expression for &� easily demonstrates

this property. With this result, computation of the trace can be simplified in circumstances where the
component matrices are not square; whichever product yields the smaller matrix can be used to compute
the trace.

� The gradient with respect to a vector of a scalar-valued function ���� equals a column matrix of the
partial derivatives.

(� ���� � ���

�
��

�
�
� � � � �

��

�
�

�
Examples of gradient calculation derived from this definition are:

(� ��� � (� ��� � �

(� ���� � ���

(� ������� � (� ������� � �

The gradient with respect to a matrix of a scalar-valued function can be defined similarly:

�(� ������	 �
��

���	
�

Examples are:

(� ����� � � (� ����&� � &

(� ���&�� � &� (� ���&���� � �����&�����

(� ��������� � ��� ���������
(� ������ � ������

�
���

�� (� �" ������ �
�
���

��
B.4 Quadratic Forms
Quadratic forms are key quantities of study in statistical signal processing. They are comprised by a Hermitian
matrix � and a vector � to produce the real-valued scalar ����. The matrix is termed the kernel of the
quadratic form. In the special case that � � �, the quadratic form reduces to the inner product of � with
itself; quadratic forms are thus considered generalizations of the inner product. If ���� � � for all non-
zero choices of �, the matrix � is said to be positive definite. If ���� 	 � under the same conditions, �
is non-negative definite. The structure of Hermitian matrices, even if they are Toeplitz, is not sufficient to
guarantee that they are non-negative definite. In contrast, Hankel matrices having no negative elements are
always non-negative definite.

The argument of the exponential in the probability density function of a Gaussian random vector is a
quadratic form. The kernel of that quadratic form is the covariance matrix of the random vector. Assuming
zero mean for algebraic simplicity, the covariance matrix is the expected value of the outer product of the
random vector � with itself: � � ������. Such matrices are always non-negative definite. To show this result,
simply consider an expanded version of the quadratic form: ���� � �

��������. Because of the squared
magnitude, this quantity can never be negative.

Quadratic forms can be re-written using the trace operation. The trace of a quadratic form simply equals
its value because a quadratic form is a scalar. Using the properties of the trace operation,

�� ������ � �� ������ �

Thus, a quadratic form equals the trace of the product between the kernel and the outer product of the vector
with itself. This seemingly more complicated expression has utility in signal processing. See �2.1.9 �8� on
the multivariate Gaussian distribution for the most well-known application of this formula.

Positive-definite Hermitian matrices can be expanded using the Cholesky factorization.

� � �%��
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where% is a diagonal matrix and � is lower-triangular with all of the diagonal elements equal to unity.
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'((((() � % �
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... � E��

. . .
...

...
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'((((()
The inverse of a lower-triangular matrix is also lower-triangular; the inverse of the matrix � is written as
��� � ����%�����.

In optimization problems, the quadratic form frequently represents a squared error cost function: the
kernel imposes a shape to the range of values of � and the quadratic form grows quadratically with increasing
the vector’s length. Analytic solutions to such optimization problems are found by evaluating the gradient
of the cost function with respect to the vector �. The gradient with respect to � is evaluated by treating the
vector’s conjugate as a constant and vice versa. In this way, we find that

(� ���� � ����

(�� ���� � ���

B.5 Matrix Eigenanalysis
One of the most powerful concepts in matrix algebra is eigenanalysis. Letting the matrix � be square, the
non-zero vector � is said to be an eigenvector of� if it satisfies

�� � 0��

where 0 is the scalar termed the eigenvalue associated with�. A scaled eigenvector is also an eigenvector. Be-
cause of this property, we define an eigenvector to always have unit inner product (��� � 	). The generalized
eigenvector � of the matrix pair ���&� satisfies

�� � 0&� �

Expressed in a slightly different form, the defining equation of eigenanalysis becomes ��� 0��� � 
;
for generalized eigenanalysis, �� � 0&�� � 
. If the matrices within the parentheses had inverses, the only
solutions to these equations would be � � 
, a trivial and uninteresting result. To find any non-zero solutions,
the eigenvectors, these matrices must not have inverses, which implies that their determinants must be zero.

��� ��� 0�� � � ��� �� � 0&� � �

For an ��� matrix, each equation becomes an ��� order polynomial. The eigenvalues of a matrix are the
roots of this polynomial. Because no closed form expression exists for the roots of polynomials of greater than
fourth order, the eigenvalues of a matrix must be found numerically in most cases of interest in signal process-
ing. The � eigenvalues are conventionally labelled in decreasing order: 0� 	 0� 	 
 
 
 	 0�. Eigenvalues
are not necessarily unique; the number of times a value is repeated is termed its multiplicity. For example,
every eigenvalue of the identity matrix equals unity and thus has multiplicity �. The eigenvalues of a sum
or product of matrices are not easily expressed in terms of the eigenvalues of the component matrices. One
remarkably simple result concerns Kronecker products: the eigenvalues of�.& equal 0�� 0�	 , ! � 	� � � � ��,
� � 	� � � � � �. We term the set �0������ of eigenvectors and associated eigenvalues the eigensystem of the
matrix�. For generalized systems to have � elements, the matrix & must be invertible. If not, the number of
eigenvectors can be zero, less than �, or infinite [29: p. 252]. When invertible, the generalized eigensystem
�0�����
�
�� equals the eigensystem �0���������.
Hermitian Matrices

In the special case where a matrix has Hermitian symmetry, several interesting properties arise. Because of
the prevalence of the correlation matrix, which is Hermitian, this situation occurs often in practice.

� The eigenvalues of a Hermitian matrix are real. The inner product ��� can be expressed as
���� � 0���. The left side of this equation equals its conjugate transpose; since the inner product
��� is always real, we have 0� � 0 and thus the eigenvalues are real.
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� If � is positive definite, all of its eigenvalues are positive. The quadratic form ���� is positive; as
inner products are positive, ���� � 0��� implies that 0 must also be positive.

� The eigenvectors associated with distinct eigenvalues of a Hermitian matrix are orthogonal. Consider
��� � 0��� and ��� � 0��� for 0� �� 0�. Noting that ������ � 0��

�
��� and �

�
���� � 0��

�
���,

these expressions differ on the left side only in that they are conjugate transposes of each other. Conse-
quently, �0� � 0������� � �, thereby indicating that �� and �� are orthogonal.

Define a matrix( having its columns to be the eigenvectors of the matrix�.

( � ���������� � � � ����

If � is Hermitian and has distinct eigenvalues, its eigenvectors are orthogonal, implying that ( must satisfy
(�( � � (i.e.,( is unitary). Furthermore, the product(��( is a diagonal matrix with the eigenvalues lying
along the diagonal.

(��( �

$%%%%&
0� � 
 
 
 �

� 0� �
...

...
. . .

� 
 
 
 � 0�

'(((()
Because ( is unitary, we find that Hermitian matrices having distinct eigenvalues can be expressed

� � (

$%%%%&
0� � 
 
 
 �

� 0� �
...

...
. . .

� 
 
 
 � 0�

'(((()(��
This equation defines the matrix’s diagonal form. From this diagonal form, the determinant and trace of �
are easily related to the eigenvalues of� as

������ �
�

���

0�

����� �
�

���

0�

Expressing the diagonal form of� less concisely, an important conclusion can be drawn: any Hermitian ma-
trix� can be expressed with the expansion� �

	
� 0��

�
���. This result is used frequentlywhen eigenanalysis

is applied to signal processing. In particular, quadratic forms can be expressed as

���� �
�

���

0� ������� �

In addition, because � � 0����, the eigenvectors of a matrix and its inverse are identical with the corre-
sponding eigenvalues being reciprocals of each other. Therefore,

��� �
�

���

	

0�
���

�
� �

For generalized eigenanalysis, orthogonalityof eigenvectors is defined with respect to the matrix&: ���&�	 �
Æ�	 . Then,�

� �
�

���

0�&���
�
�&

�

��� �
�

���

	

0�
���

�
�

�Despite appearances, the second equation is correct. Test its veracity.
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Rayleigh Quotient

An important quantity in matrix algebra easily manipulated in terms of eigenvectors and eigenvalues is the
ratio of two quadratic forms.

( �
����
��&�

The matrices� and& are Hermitian and&must be positive definite. The key question asked is what vector �
maximizes (or minimizes) this Rayleigh quotient. The simplest, and most prevalent case, occurs when& � �.
The Rayleigh quotient is expressed in terms of the eigenvectors and eigenvalues of�.

( �

�

���

0��������

���

The denominator is now seen to normalize the quotient: the quotient’s value does not change when � is
multiplied by a scalar. We can thus take the norm of� to be one and the denominator is no longer a concern. To
maximize the numerator, the vector must be proportional to the eigenvector �� corresponding to the maximum
eigenvalue of�. If not chosen this way, some of �’s components would project onto other eigenvectors which
necessarily have smaller eigenvalues and thus provide less weight to the sum. A similar argument applies if
the minimizing vector is sought.

(��5 � 0��5����5 � ���5 (��	 � 0��	����	 � ���	

Furthermore, the Rayleigh quotient is bounded by the minimum and maximum eigenvalues.

0��5 � ( � 0��	

When & does not equal the identity matrix, we can use the generalized eigensystem of ���&� to find the
extrema of the Rayleigh quotient. When � is a generalized eigenvector, �� � 0&�, which implies that the
Rayleigh quotient equal 0. Because� and& are Hermitian and positive definite, the generalized eigenvectors
form a basis and the Rayleigh quotient obeys the above inequality for the generalized eigenvalues. We can
express the Rayleigh quotient in other ways. First of all, we know that the generalized eigensystem equals the
eigensystem of&���. In addition, define 4� � &���� where &��� is the square root of&. Computationally,
square roots may seem difficult to find; in eigenanalysis terms, a straightforward definition emerges.

&��� �
�

���

0
���
� ���

�
�

With this definition, the square root of a matrix satisfies the intuitive property&���&��� � &. The Rayleigh
quotient thus becomes

( �
4��

�
&����

��
�

�
&����

�
4�

4��4�
Thus, the vector 4� maximizing or minimizing the Rayleigh quotient corresponds to the eigenvector having
maximum or minimum eigenvalues of the matrix product

�
&����

��
�

�
&����

�
.

Singular Value Decomposition

Related to eigenanalysis is the singular value decomposition or SVD technique. Letting� be an��� matrix
consisting of complex entries, it can be expressed by

� � $%(��

where % is the / � / diagonal matrix ���-���� � � � � ��� and where $ (� � /) and ( (/ � �) are matrices
satisfying$�$ � �� and(�( � ��. Letting �� and �� denote the !�� columns of$ and( respectively, then

��� � ���� ���� � ���
�
�
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The scalars �� are termed the singular values of the matrix � while �� and �� are termed the left and right
(respectively) eigenvectors of �. The number of non-zero singular values equals /, which must not exceed
��"�����. The number equals this upper limit when the side of the matrix having the smallest length (either
the rows or the columns) has linearly independent components. From these expressions, the eigenvectors of
��� and��� are found to be

����� � ��� �� ����� � ������

One of these products will not have full rank when the matrix� is not square. For example, if� is a column
vector,��� is a scalar and thus is invertible while��� is an��� matrix having only one non-zero singular
value. These matrices are Hermitian; they share the same non-zero eigenvalues and these equal the squares
of the singular values. Furthermore, the collections of vectors ���� and ���� are each orthonormal sets. This
property means that$$� � �� and((� � ��. The singular value decomposition suggests that all matrices
have an orthonormal-like expansion of the form

� �
�

���

�����
�
� �

No non-square matrix has an inverse. Singular value decomposition can be used to define the pseudo
inverse of a rectangular matrix. Assuming that all of the singular values are non-zero, the pseudo inverse���

satisfies either ���� � �� or ���� � �� according to which dimension of the matrix is the smallest. By
analogy to the eigenvalue-eigenvector expansion of an invertible matrix, the singular value decomposition of
a matrix’s pseudo inverse would be

��� �
�

���

	

��
���

�
�

or in matrix terms ��� � (%��$�. The pseudo inverses can be defined more directly by either ��� �
��������� or ��� � ���������. To be more concrete, suppose � has linearly independent rows. Its
pseudo inverse is given by��������� so that���� � �: only the right inverse exists.

B.6 Projection Matrices
Eigenanalysis and singular value analysis are often used because they express a matrix’s properties “natu-
rally”. One case in point is the projection matrix. A projection matrix ) has the property )� � )� for
��� 	 �. The eigenvalues of a projection must therefore obey the relationship 0� � 0�. Two solutions are
possible: 0 � 	 and 0 � �. Thus, the eigenvectors of a projection matrix either have zero eigenvalues, in
which case any vector that can be expressed by them is annihilated by the matrix ()� � 
), or the eigenvec-
tors have unity eigenvalues and vectors comprised of them are unaffected by the matrix ()� � �). If a vector
has components belonging to both sets of eigenvectors, the part of the vector that “survives” the matrix is that
portion represented by the eigenvectors having unity eigenvalues. Hence the origin of the name “projection
matrix”: matrices having only unity and zero eigenvalues can be used to find those components of any vector
which correspond to the eigenvectors having unity eigenvalues.

For any � � � matrix � (� � �) that is used as a linear transformation, it defines a subspace for the
domain of the transformation. In more exact terms, when the�-dimensional vectors � � �� define a vector
space, what is the image of this space in the original, higher dimensional space containing the vectors �? The
most elegant response is in terms of the singular values and singular vectors of �. The vector � is thereby
expressed

� �
�

���

����
�
����� �

The result of the linear transformation is always a linear combination of the left singular vectors of�.
The projection matrix )� associated with a linear transformation � would project all �-dimensional

vectors onto a subspace defined by the linear transformation. )� would have � unity eigenvalues for the
left singular vectors of� and zero eigenvalues for all remaining� � � eigenvectors. Defining$� to be the
matrix of eigenvectors corresponding to these zero eigenvalues, the projection matrix can be expressed as

)� �
�
$ $�

� � �� 



 


� �
$ $�

��
�
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This projection matrix can be expressed more directly in terms of the matrix � as ����������. Note
than this expression can be written in terms of the transformation’s pseudo inverse: while ���� � ��,
)� � ����.
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Appendix C

Ali-Silvey Distances

Ali-Silvey distances comprise a family of quantities that depend on the likelihood ratio !��� and on the
model-describing densities ��, �� in the following way.

����� ��� � � ��� ���!������

Here, ��
� is a non-decreasing function, ��
� a convex function, and ���
� means expectation with respect to
��. Where applicable, ��, �� denote the a priori probabilities of the models. Basseville [7] is good reference
on distances in this class and many others. In all cases, the observations consist of � IID random variables.

Ali-Silvey Distances and Relation to Detection Performance

Name ��
� Performance Comment

Kullback-Leibler
-��� ��� �
� ��-�
� ���

���
� 	

�
��-	4 � ����� ���

Kullback-Leibler
-��� ��� � ��-�
� ���

���
� 	

�
��-	% � ����� ���

Neyman-Pearson error rate
under both fixed and ex-
ponentially decaying con-
straints on 	% (	4 )

K-Divergence
��
� � 	� ��-�
� ���� ���������� ������ � 	( K���� ��� � -��� ��� 


-��� ���

Chernoff �
�,� ; � ��� 	� ��� ���
���

� 	

�
��-	( � �"(

,

�
��
����� ���

Independent of a priori prob-
abilities
Not in Ali-Silvey class

> -Hypothesis
Chernoff

�
�,� ; � ��� 	� ��� ���
���

� 	

�
��-	( � ��"

���	
�"(
,
����� �	�

Bhattacharyya �
���� ���������� ����
� � 	( � �

��������� ���
Minimizing ����� ��� will
tend to minimize 	(

Orsak ����
� � ��� 	( � �
� � �

������ ���
Exact formula for average er-
ror probability

Kolmogorov �
� ��
� � 	� If �� � ��, 	( � �

� � �
������ ���

Hellinger ��
���� � 	��
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